
  

Abstract—In this paper, we propose a new scheme based on 

the Sampson distance (SD) to describe visual feature residuals 

for visual-inertial odometry (VIO). Unlike the epipolar-

constraint-based SD for visual odometry (VO), the proposed SD 

is formulated based on the perspective projection constraint. We 

proved in theory that the proposed SD retains the good 

properties of those earlier SD criteria in the literature of VO and 

it represents a visual feature residual more accurately than the 

prevailing transfer distance (TD) in existing VIO methods. We 

formulate three distance criteria, including TD, reprojection 

error (RE), and SD, and compared their performances by 

simulation. The results show that the SD is much more accurate 

than the TD and it is a very accurate estimate of the gold 

standard criteria⎯RE. Based on the SD, we modified VINS-

Mono by replacing its TD-based visual residuals with the SD-

based residuals and study the SD’s efficacy in pose estimation by 

experiments with several public datasets. The results reveal that 

the SD-based VINS-Mono has a substantial improvement over 

the original VINS-Mono in pose estimation accuracy. This 

indicates that the SD is a better distance criterion than the TD 

for representing visual feature residuals. The proposed SD may 

find its applications to broader areas in computer vision and 

robotics.  

I. INTRODUCTION 

Over the last decade, visual-inertial navigation systems 

(VINS) have been widely used in virtual/augmented reality 

[1], autonomous navigation [2], [3], [4], 3D reconstruction [5], 

assistive navigation [6], etc. VINS, consisting of a camera and 

an inertial measurement unit (IMU), estimates its 6-DOF pose 

by visual-inertial odometry (VIO) that fuses the visual and 

inertial data to compute the pose estimation. Both sensory data 

are used to compute the system’s egomotion by tracking the 

visual features over image frames and by integrating the IMU 

measurements over time. However, they contribute to pose 

estimation in a complementary fashion: the inertial data tracks 

the system’s motion when the visual odometry (VO) 

malfunctions in a feature-sparse scene while the VO-estimated 

motion helps to reduce the IMU bias and thus lower its drift 

error. The net effect is that the VIO-estimated pose is more 

accurate and reliable than that estimated by VO.   

The state-of-the-art VIO methods [7 ], [8 ], [9 ] tightly 

couple the residuals of the inertial data and the visual 

measurements by using a filtering or a smoothing strategy to 

estimate the VINS’ motion state. They formulate the residual 

for each visual measurement as the transfer distance (TD). 

Given a pair of matched visual features between two images, 
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the TD is computed on the 2nd image as the squared distance 

between the feature and the forward-projected feature (i.e., the 

perspective projection of the feature from the 1st image onto 

the 2nd image). This computation assumes that the location of 

the feature on the 1st image is error-free. The assumption does 

not hold in the real world due to image noise, uncalibrated 

optical distortion, etc. The use of TD results in an estimate of 

the fundamental matrix (FM) that is not optimal. To overcome 

this problem, a more accurate criterion⎯reprojection error 

(RE) ⎯is introduced [ 10 ]. RE takes into account the 

perspective projection errors of the pair of visual features on 

both images (i.e., both forward-/backward-projection errors). 

Assuming a Gaussian noise for image points, the maximum 

likelihood estimate (MLE) of the FM is the one that minimizes 

the RE. This solution is regarded as the gold standard method 

[10] in the literature of computer vision. However, the 

minimization of RE is computationally expensive because it 

involves an iterative optimization process where the relevant 

camera poses and the associated visual features’ locations 

must be updated simultaneously at each iteration. A more 

time-efficient alternative is to use the Sampson distance (SD). 

SD is computed based on the epipolar constraint and it can be 

viewed as the first-order approximation of RE [10]. In existing 

research, SD has been used to estimate the FM between two 

camera views and achieves better accuracy [15], [16], [18] 

than other distance criteria. From the estimated FM, the 

relative camera pose change can be retrieved readily⎯an 

essential step for VO [ 11 ] to estimate the camera pose. 

Inspired by this, we hypothesize that using SD as the distance 

criteria for the visual measurements’ residuals in VIO will 

result in more accurate pose estimation. To validate the 

hypothesis, we formulate the residual of a visual feature by 

using the SD and introduce a new VIO method based on the 

SD. Since the SD is computed differently in our case (based 

on the perspective projection constraint instead of the epipolar 

constraint), we must prove/demonstrate that it retains its 

superiority as demonstrated in the existing work [16], [18]. To 

the best of our knowledge, this paper is the first work of its 

kind in the literature of VIO. Our main contributions are 

summarized as follows:  

• We derive the formulas for computing SD based on the 

perspective projection constraint. This way, the SD 

functions can be used in the context of VIO for pose 

estimation.  
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• We prove in theory TD > SD ⩾ RE , i.e., SD is a more 

accurate estimation for RE compared with TD.  

• We compare the SD-based VIO with the TD-based VIO by 

simulation and by experiments with two real-world 

datasets, EuRoc MAV [ 12 ] and TUM VI [ 13 ], to 

demonstrate the superiority of SD in formulating the visual 

residuals. 

II. RELATED WORK 

SD was originally introduced by Sampson [14] for conic 

fitting to scattered data, where an iterative weighted least-

square method was used to estimate the parameters of a conic 

model. The method finds the refined parameters that reduce 

the overall fitting errors iteratively. The fitting error of a data 

point is weighted proportionally to the inverse gradient of the 

fitting error norm. This way, the influence of a data point with 

large noise is reduced and the fitting accuracy is improved. 

Later, SD was introduced to computer vision to model the 

measurement residuals of the visual feature correspondences 

between two camera views to compute the 2D homography, 

FM, or the trifocal tensor [10], [15]. In [16], SD is used to 

estimate the essential matrix and its accuracy is compared with 

that of other distance criteria, including the algebraic distance, 

the symmetric squared geometric distance (SED), and the 

squared reprojection distance. The method computes multiple 

essential matrix candidates by using the classic five-points 

method [ 17 ] and then selects the one with the smallest 

distance. The comparative studies in [16] reveal that the use of 

SD/RE results in a more accurate estimation result than other 

distance criteria and SD is more computationally efficient than 

RE. A similar study was conducted in [18], where it was 

proved in theory that SED (i.e., the sum of the TDs in both 

images) is larger than RE/SD. In addition, it was demonstrated 

by simulation that the values of SD are almost equal to that of 

RE. In other words, the use of SD as a cost function to be 

minimized results in a more accurate FM estimate when 

compared to SED. In these methods, the SD for each visual 

feature is formulated as the distance between the estimated 

visual measurement and the epipolar line, i.e., the error 

representing a deviation from the epipolar constraint.  

Existing VIO methods [1-5], [7-9] use TD to express the 

residuals for the visual features and include the visual residuals 

in the cost function to be minimized. It is natural to 

hypothesize that by replacing the TD-based visual residual 

with an SD-based one we can improve the pose estimation 

accuracy. In the VIO framework, the depth of a visual feature 

is computed when it is first observed and tracked onto the next 

image frame. Its coordinates on the subsequent images may be 

determined via perspective projection. Therefore, the SD, in 

this case, is computed as the geometric distance between the 

actual visual measurement and the estimated visual 

measurement. To validate the hypothesis, we derive the new 

formulas for the SD as well as the visual residual and prove 

that the property of the SD in the earlier works can be 

translated to its VIO application. Based on the new SD-based 

visual residual, we modify a state-of-the-art VIO method—

VINS-Mono [9]—by replacing its TD with SD for computing 

the visual residuals and then compare the modified VINS-

Mono with the original method to demonstrate the benefit of 

using the SD in VIO. 

III. SAMPSON DISTANCE IN VIO  

Our previous work [19] reveals that VINS-Mono has the 

most accurate pose estimation result because: 1) Its robust 

initialization allows for a more accurate estimation of the 

initial system state; 2) Its inverse-depth parameterization of 3D 

visual features results in Gaussian-distributed position 

uncertainties for low parallax visual features [20], which have 

non-Gaussian position uncertainties if described by using their 

XYZ coordinates. Therefore, we use VINS-Mono as a 

benchmark and modify it by using the SD. We first introduce 

the principle of the nonlinear state estimation of VINS-Mono 

and the definition of the SD, and we then derive the residual 

functions for the visual-feature-pairs by using the SD.  

A. State Estimator  

A sliding window-based nonlinear optimization process is 

employed for state estimation. The full state vector within the 

sliding window is defined as 𝛘 = {𝐬1, 𝐬2, … , 𝐬𝑀 , 𝜆1, 𝜆2, … , 𝜆𝐾} 

where 𝐬𝑖 = {𝐭𝑏𝑖

𝑤 , 𝐯𝑏𝑖

𝑤 , 𝐪𝑏𝑖

𝑤 , 𝐛𝑎 , 𝐛𝑔}  ( 𝑖 ∈ [1,𝑀] ) is the IMU’s 

motion state (position, velocity, orientation, accelerometer 

bias, and gyroscope bias) at the time when the 𝑖𝑡ℎ keyframe 

is captured. Superscript 𝑤  is used to denote the world 

coordinate system while subscripts 𝑏 and 𝑐 represent the IMU 

and the camera coordinate systems, respectively. 𝑀 is the size 

of the sliding window (𝑀 = 10 in this work) and 𝐾  is the 

total number of the visual features inside the sliding window. 

𝜆𝑘 (𝑘 = 1, . . . , 𝐾) is the estimate for the inverse depth of the 

𝑘𝑡ℎ visual feature at the time it is first observed. In the world 

coordinate system, the IMU’s pose is denoted by 𝝃𝑏𝑖

𝑤 =

{𝐭𝑏𝑖

𝑤 , 𝐪𝑏𝑖

𝑤 } and the rotation matrix corresponding to quaternion 

𝐪𝑏𝑖

𝑤  is denoted as 𝐑𝑏𝑖

𝑤 . The state vector 𝛘  is computed by 

minimizing the following cost function, representing the sum 

of the Mahalanobis distances for all residuals of the visual-

inertial measurements: 

𝛘∗ = argmin
𝛘

(||𝑝𝐫||2 + ∑𝑗 ||𝑢𝐫𝑗||
2 + ∑ ∑(𝑖,𝑗) 𝜌(||𝑣𝐫𝑖𝑗

𝑘 ||2)𝑘 ) (1) 

where 𝜌() is the Cauchy loss function [21]. 𝐫
𝑝

, 𝐫𝑗
𝑢 , and 𝐫𝑖𝑗

𝑘𝑣  , 

represent the residuals for the prior information from 

marginalization, IMU preintegration (between keyframes 𝑗 −
1  and 𝑗), and the visual feature 𝑘  that is first observed at 

keyframe 𝑖  and tracked onto keyframe 𝑗, respectively. The 

modified VINS-Mono computes 𝐫𝑖𝑗
𝑘𝑣  by using the SD 

criterion, which is described later. Readers are referred to [9] 

for the details on the computation of the other residuals.  

B. Sampson Distance  

The problem of estimating the camera’s pose change 

between two keyframes given several matched visual-feature-

pairs 𝐱𝑝 ↔ 𝐱𝑝
′  for 𝑝 = 1,⋯ , 𝑃 can be fitted into a common 

framework with two components [10]: 

• a measurement space ℝ𝑁  consisting of measurement 

vectors 𝐗 = {𝐱𝑝, 𝐱𝑝
′ }  

• a model 𝐻 , representing a subset 𝑆  of points in ℝ𝑁 . A 

measurement vector 𝐗 that lies on 𝑆 is said to satisfy the 



model. The subspace that satisfies the model is called a 

variety 𝒱𝐻  in ℝ𝑁  

Differing from the previous works [15], [16], [18], that use 

epipolar constraint, 𝐻  is defined by using the perspective 

projection constraint in our work. This constraint ensures the 

perspective projection error is zero for a visual-feature-pair in 

𝐗 ∈ 𝒱𝐻  satisfying 𝒞𝐻(𝐗) = 0 , where  𝒞𝐻(𝐗)  is the cost 

function. Due to image noise or uncalibrated optical distortion, 

𝒞𝐻(𝐗) ≠ 0  for a real-world scenario. The measurement 

residual can be modeled by finding a vector 𝐗̂, which is the 

closest to 𝐗 and satisfies 𝐻, i.e. 𝒞𝐻(𝐗̂) = 0. For a nonlinear 

𝒞𝐻(𝐗), 𝐗̂ can be obtained by an iterative process. In each 

iteration, 𝒞𝐻(𝐗) is approximated by a Taylor expansion: 

𝒞𝐻(𝐗 + 𝛅𝐗) ≈ 𝒞𝐻(𝐗) +
𝜕𝒞𝐻

𝜕𝐗
𝛅𝐗 (2) 

Here, 𝛅𝐗 = 𝐗̂ − 𝐗 quantifies the measurement residual, and 𝐗̂ 

is the corrected measurement vector on 𝒱𝐻 , satisfying 

𝒞𝐻(𝐗̂) = 0 . Letting 𝐽 =
𝜕𝒞𝐻

𝜕𝐗
 and 𝛜 = 𝒞𝐻(𝐗) − 𝒞𝐻(𝐗̂) , we 

have 

𝐽𝛅𝐗 = −𝛜                      (3) 

The minimization of cost 𝒞𝐻(𝐗) is equivalent to finding 𝛅𝐗 

that minimizes ||𝛅𝐗||  subjects to (3). The problem can be 

solved by using Lagrange Multipliers [10] and the solution is 

given by: 

𝛅𝐗 = −𝐽𝑇(𝐽𝐽𝑇)−1𝛜  (4) 

The SD is defined as the squared norm of 𝛅𝐗:  

||𝛅𝐗||
2 = 𝛜𝑇(𝐽𝐽𝑇)−1𝛜     (5) 

C. SD Computation  

Let a pair of matched visual-features be denoted by 𝐱𝑐𝑖 =
(𝑥𝑖 , 𝑦𝑖 , 1)𝑇 ↔ 𝐱𝑐𝑗 = (𝑥𝑗 , 𝑦𝑗 , 1)𝑇  and the inverse of the 3D 

feature point’s depth in the camera coordinate system 𝐶𝑖 be 

denoted by 𝜆𝑖. We define a measurement vector in ℝ4 based 

on the visual-feature pair by 𝐗 = (𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗)
𝑇 , where 

(𝑥𝑖 , 𝑦𝑖)  and (𝑥𝑗 , 𝑦𝑗)  are the normalized coordinates of the 

visual feature on images 𝑖 and 𝑗, respectively. The reprojected 

visual feature can be obtained by 𝐱̃𝑐𝑗 = 𝐱̂𝑐𝑗/𝑧̂𝑗, where 𝐱̂𝑐𝑗 =

(𝑥̂𝑗 , 𝑦̂𝑗, 𝑧̂𝑗)
𝑇  represents the 3D feature point described in the 

camera coordinate system 𝐶𝑗. 𝐱̂𝑐𝑗  can be computed from 𝐱𝑐𝑖  

via a rigid transformation given by 𝐱̂𝑐𝑗 = 𝐑𝑐𝑖

𝑐𝑗 𝐱𝑐𝑖

𝜆𝑖
+ 𝐭𝑐𝑖

𝑐𝑗
, where 

𝐑𝑐𝑖

𝑐𝑗
 and 𝐭𝑐𝑖

𝑐𝑗
 are the rotation matrix and translation vector from 

𝐶𝑖  to 𝐶𝑗 , respectively. The perspective projection constraint 

for a pair of error-free visual features is given by 𝒞𝐻(𝐗) =
𝐱̂
𝑐𝑗

𝑧̂𝑗
− 𝐱𝑐𝑗 = 0 . Due to image noise, uncalibrated optical 

distortion, etc., 𝒞𝐻(𝐗)0. An error is thus defined by 𝛜 =
𝒞𝐻(𝐗)= (𝑥̂𝑗 𝑧̂𝑗⁄ − 𝑥𝑗 , 𝑦̂𝑗 𝑧̂𝑗⁄ − 𝑦𝑗 , 0)𝑇 , based on which the SD 

can be computed by using (5). However, due to pose 

estimation error, 𝑧̂𝑗 can be very close to zero, resulting in a 

singular point and an infinity value of 𝒞𝐻. To avoid this case, 

we opt to redefine the error as 𝛜 = 𝑧̂𝑗𝒞𝐻(𝐗) = (𝑥̂𝑗 −

𝑧̂𝑗𝑥𝑗 , 𝑦̂𝑗 − 𝑧̂𝑗𝑦𝑗 , 0)𝑇 . In other words, we compute the 

geometric distance between the feature and the reprojected 

feature on the image plane with 𝑧 = 𝑧̂𝑗  instead of 𝑧 = 1 . 

Since the third element of 𝒞𝐻(𝐗) is zero, we rewrite 𝛜 by:  

𝛜 = [
𝑥̂𝑗 − 𝑧̂𝑗𝑥𝑗

𝑦̂𝑗 − 𝑧̂𝑗𝑦𝑗
]   (6) 

From (5), it can be seen that the redefinition of 𝛜 does not 

change the value of SD while removing the singular point. 

The 24  Jacobian matrix, the partial derivative of 𝛜 with 

respect to 𝐗, can be computed by:  

𝐽 =
𝜕𝛜

𝜕𝐗
= [

𝜕𝛜

𝜕𝐱𝑐𝑖
,

𝜕𝛜

𝜕𝐱
𝑐𝑗
] (7) 

𝜕𝛜

𝜕𝐱𝑐𝑖
= [

1,0, −𝑥𝑗

0,1, −𝑦𝑗
] 𝐑𝑐𝑖

𝑐𝑗

[
 
 
 
1

𝜆𝑖
, 0

0,
1

𝜆𝑖

0,0 ]
 
 
 

,  
𝜕𝛜

𝜕𝐱
𝑐𝑗

= [
−𝑧̂𝑗, 0

0, −𝑧̂𝑗
]  (8) 

After computing 𝐽, the measurement residual (𝐫𝑖𝑗
𝑣 = 𝛅𝑋) and 

the SD can be calculated by using (4) and (5). The Jacobian 

matrices of 𝐫𝑖𝑗
𝑘𝑣  with respect to pose variables 𝝃𝑏𝑖

𝑤  and 𝝃𝑏𝑗

𝑤  are 

derived in the APPENDIX. 

IV. COMPARISON BETWEEN SD AND TD 

The accuracy of the estimated FM may change when a 

different error/distance criterion is used. In [18], it is 

mathematically proved that the symmetric epipolar distance 

(SED) overestimates the RE and it is larger than the SD as 

well (SED ≥ √2RE, SED ≥ √2SD). The proof was obtained 

by using the SD criterion based on epipolar constraint. 

Following this result, our hypothesis for the perspective-

projection-based distance criteria for VIO is TD>RE and 

TD>SD. In this section, we will first prove in theory that TD 

is larger than both RE and SD and then show by simulation 

that TD is consistently much larger than RE whereas SD is 

almost equal to RE.  

For a pair of matched visual features 𝐱𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖 , 1)𝑇 ↔
𝐱𝑐𝑗 = (𝑥𝑗 , 𝑦𝑗 , 1)𝑇 with an inverse depth 𝜆𝑖, the RE is defined 

as the perpendicular distance in ℝ4  between 𝐗 =
(𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗)

𝑇  and 𝒱𝐻 , where 𝒱𝐻  is implicitly defined by 

equation 𝐱̂𝑐𝑗 − 𝑧̂𝑗𝐱̅
𝑐𝑗 = 0 , where 𝐱̂𝑐𝑗 = (𝑥̂𝑗 , 𝑦̂𝑗, 𝑧̂𝑗)

𝑇  =

 [𝐑𝑐𝑖

𝑐𝑗 𝐱̅𝑐𝑖

𝜆𝑖
+ 𝐭𝑐𝑖

𝑐𝑗
] . RE can be obtained by solving the 

optimization problem:  

RE = 𝑚𝑖𝑛
𝐱̅𝑐𝑖 ,𝐱̅

𝑐𝑗
(||𝐱𝑐𝑖 − 𝐱̅𝑐𝑖||2 + ||𝐱𝑐𝑗 − 𝐱̅𝑐𝑗||2)

𝑠. 𝑡.     𝒞𝐻(𝐗̅) = 𝐱̂𝑐𝑗 − 𝑧̂𝑗𝐱̅
𝑐𝑗 = 0

       (9) 

RE represents the needed minimum distance to move point 

𝐗 = (𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗)
𝑇  onto point 𝐗̅

∗
= (𝑥̅𝑖

∗, 𝑦̅
𝑖
∗, 𝑥̅𝑗

∗, 𝑦̅
𝑗
∗)𝑇

 that 

lies on 𝒱𝐻 . Assuming that the features’ coordinates are 

independent and identically-distributed random variables 

with a Gaussian distribution, the corrected feature 

correspondence (𝐱̅∗𝑐𝑖 , 𝐱̅∗𝑐𝑗) is the MLE of its true value [10].  

A. Compare SD with RE and TD 

According to the definition of the SD in section III.B, 

||𝛅𝑋||2 = ||𝐗 − 𝐗̂||2  , where 𝐗̂ is a point on 𝒱𝐻 . Since 𝐗 is 

the MLE of 𝐗  on the variety 𝒱𝐻 , RE= ||𝐗 − 𝐗̅||2  is the 

squared perpendicular distance of  𝐗  to 𝒱𝐻  [10], meaning 

𝐗𝒱𝐻  is the closest point to 𝐗. Therefore, we can infer ||𝐗 −
𝐗̂||2 ⩾ ||𝐗 − 𝐗̅||2 and SD ⩾ RE.  



Assuming that the location of the visual feature is perfect 

on the 1st image, the TD is calculated as the distance on the 

2nd image between the corresponding feature and the forward-

projected feature. Given 𝐱𝑐𝑖 ↔ 𝐱𝑐𝑗 and 𝜆𝑖, TD is the squared 

distance between 𝐱𝑐𝑗  and the projection of 𝐱𝑐𝑖  on frame 𝑗 , 

denoted 𝐱̃𝑐𝑗 , and it is given by:  

TD = ||𝐱𝑐𝑗 − 𝐱̃𝑐𝑗||2 = (𝑥𝑗 −
𝑥𝑗

𝑧̂𝑗
)2 + (𝑦𝑗 −

𝑦̂𝑗

𝑧̂𝑗
)2 =

𝛜𝑇𝛜

𝑧̂𝑗
2  (10) 

𝐱̃𝑐𝑗  has been defined in III.C and vector 𝛜 is given in (6). 

Equation (7) can be rewritten as: 

𝐽 = [𝐾, [
−𝑧̂𝑗, 0

0, −𝑧̂𝑗
]]   (11) 

where 𝐾 =
𝜕𝛜

𝜕𝐱𝑐𝑖
. Then  

𝐽𝐽𝑇 = 𝑧̂𝑗
2𝐈2 + 𝐾𝐾𝑇     (12) 

where 𝐈2 is a 2×2 identity matrix. According to Hua’s equality 

[22], (𝐴 + 𝐵)−1 = 𝐴−1 − (𝐴 + 𝐴𝐵−1𝐴)−1, we can derive:  

(𝐽𝐽𝑇)−1 = (𝑧̂𝑗
2𝐈2 + 𝐾𝐾𝑇)−1  

=
1

𝑧̂𝑗
2 𝐈2 − (𝑧̂𝑗

2𝐈2 + 𝑧̂𝑗
4(𝐾𝐾𝑇)−1)−1 =

1

𝑧̂𝑗
2 𝐈2 − 𝑀 (13) 

where 𝑀 = (𝑧̂𝑗
2𝐈2 + 𝑧̂𝑗

4(𝐾𝐾𝑇)−1)−1 . Substituting (13) into 

(5), we have:  

SD = ||𝛅𝑋||2 = 𝛜𝑇(𝐽𝐽𝑇)−1𝛜 =
𝛜𝑇𝛜

𝑧̂𝑗
2 − 𝛜𝑇𝑀𝛜 = TD − 𝛜𝑇𝑀𝛜  (14) 

Since matrix 𝐾𝐾𝑇 is semi-positive, it is obvious that matrix 

𝑀 is positive, meaning 𝛜𝑇𝑀𝛜 > 0. Therefore, we have TD =
SD + 𝛜𝑇𝑀𝛜 > SD . Because TD > SD ⩾ RE , SD is a better 

approximation of RE than TD.  

V. SIMULATION AND EXPERIMENTAL RESULTS 

We first compared the accuracy of SD and TD in 

estimating the RE and the computational times of SD, TD and 

RE by simulation. Then, we then modified the TD-based 

VINS-Mono by using SD. The modified method is called 

VINS-Mono-SD. We compared the two methods by 

simulation and by experiments with real-world datasets. A 

Lenovo ThinkPad T430 (with a duo-core Intel Core i5-3320M 

CPU and 8 GB RAM) was used for the work.  

A. Comparison of distance criteria by simulation  

We conducted a simulation to compare TD, SD, and RE 

computed for a visual feature with a known depth. A thousand 

feature points were uniformly generated in a 3D space 

{(𝑥, 𝑦, 𝑧)||𝑥|≤5,|𝑦|≤5,|𝑧|≤5}  (unit: meter) and the 2D visual 

features were obtained by projecting these feature points onto 

the 640×480-pixel image plane of a simulated camera with 

focal-length f=525 and principal point (320,240). The first 

image frame 𝐼1  was obtained when the camera was at the 

origin and facing forward, and the second image frame 𝐼2 was 

obtained after the camera underwent a random pose change 

[𝐑; 𝒕]. The projection produces a set of visual-feature-pairs on 

the two images. Their true locations 𝐗̅ = (𝐱̅𝑐1 , 𝐱̅𝑐2)  were 

computed by using the camera parameters. A zero-mean 

Gaussian noise ( 𝜎𝑢 = 𝜎𝑣 = 𝜎 ) was then added to 𝐗 to 

generate the real measurement 𝐗 = (𝐱𝑐1 , 𝐱𝑐2) . Given 

(𝐱𝑐1 , 𝐱𝑐2) and [𝐑, 𝒕], we estimated the 3D feature point by 

triangulation and use the resulted point to generate 𝐗̂ =

(𝐱̂𝑐1 , 𝐱̂𝑐2) by perspective projection. We then used equations 

(8), (9), and (13) to compute the values for RE, TD, and SD, 

respectively. In our simulation, we used 12 different ,  

ranging from 0.2 to 2.4 pixels (step-size: 0.2-pixel). For each 

 value, we repeated the computation 500  times and 

computed the mean squared residuals for RE, TD, and SD. 

Fig. 1 plots the mean squared residuals against . It can be 

seen that: 1) the mean squared residual for SD is almost equal 

to that of RE, and it is much smaller than that of TD, meaning 

that the estimate 𝐗̂ by using SD is more accurate than that by 

using TD; 2) TD values are consistently much larger than both 

the RE and SD values; 3) each SD value is very close to the 

RE value because the initial measurement is almost equal to 

the optimal solution to the problem defined in (9) and thus the 

linear approximation is accurate. Simulation results also show 

that the mean runtimes of RE, SD, and TD (coded with Matlab 

2018b) are 6.912, 0.037, and 0.039 milliseconds, respectively. 

The computation of SD takes much shorter time than that of 

the RE. These results validate our hypothesis in section IV.  

B. SD-based and TD-based VIOs on Synthetic Data   

We employed the open-source code [ 23 ] to generate 

simulated visual-inertial data by moving the simulated VINS 

in a specified trajectory. When running the simulator, we used 

the default statistical properties for the IMU and changed the 

image measurement noise (𝜎𝑢 = 𝜎𝑣 = 𝜎 ) from 0.3 to 2.4 

pixels (step-size: 0.3-pixel). For  value, we ran VINS-Mono 

and VINS-Mono-SD 10 times. For each run, we first 

calculated the root mean square error (RMSE) between the 

estimated trajectory and the ground truth trajectory and then 

computed the mean RMSE over the 10 runs. Table I 

summarize the mean RMSE for various  values. It can be 

observed that VINS-Mono-SD achieves a smaller mean 

RMSE than VINS-Mono in all cases and a significant error 

reduction in 5 out of the 8 cases. The improved pose accuracy 

results from the utilization of SD to compute the visual feature 

residuals. Compared to TD, the SD can better estimate the RE, 

increasing the pose estimation accuracy. 

 

Fig. 1 Comparison of mean squared residuals.  

Table I: Mean RMSE of VINS-Mono and VINS-Mono-SD (Pixels) 

Noise (𝜎) 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 

VINS-Mono  0.021  0.036  0.050  0.076  0.081  0.114  0.190  0.243 

VINS-Mono-SD  0.015  0.035  0.041  0.068 0.08  0.111  0.129  0.205 

Error Reduction  28.6%  2.8%  18.0%  10.5%  1.2%  2.6%  32.1%  15.6% 

 



C. Experimental results with real-world datasets  

We compared the performances of VINS-Mono-SD and 

VINS-Mono on two public datasets: EuRoc MAV [12] and 

TUM-VI [13]. Since the ground truth is available, we 

evaluated the VIO’s performance by using the absolute 

position (3D) error (APE), the RMSE between the ground-

truth positions, and the corresponding estimated positions 

along the entire trajectory. To compute the RMSE, the 

trajectory produced by each method is aligned with the ground 

truth trajectory by a full SE3 alignment. The results are 

summarized in Tables II and III. It can be seen that VINS-

Mono-SD achieves a smaller APE than VINS-Mono in seven 

of the eleven experiments for EuRoc MAV and thirteen of the 

seventeen experiments for TUM-VI. Its performance 

degradation in one case for EuRoc and three cases for TUM 

VI is modest compared with the performance improvement in 

the other cases. This demonstrates that the VINS-Mono’s pose 

estimation accuracy can be significantly improved by 

replacing the TD-based residuals with the SD-based residuals 

for the visual features. Fig. 2 compares the trajectories 

estimated by the two methods for three selected data 

sequences, from which it can be observed that VINS-Mono-

SD results in a more accurate trajectory.  

VI. CONCLUSION 

In this paper, we proposed a new SD formulation based on 

the perspective projection constraint to describe the visual 

feature residuals for VIO. We proved in theory that the 

property of the SD in VO translates well into the proposed SD 

for VIO and the proposed SD provides a more accurate 

description for a visual feature residual than the prevailing TD 

criterion used in the state-of-the-art VIO methods. We 

validated by simulation result that SD is much more accurate 

than TD and it is a very accurate estimate of the RE, which is 

the gold standard representation for visual residual. Based on 

the SD, we modified VINS-Mono by replacing its TD-based 

visual residuals with the SD-based ones and carried out 

experiments to compare the performances of the modified 

VINS-Mono and VINS-Mono and investigate the 

effectiveness of SD. The experimental results demonstrated 

that the SD-based VINS-Mono has a significant performance 

improvement over VINS-Mono in terms of pose estimation 

accuracy, indicating that SD is a better distance criterion than 

TD. The work presented in this paper serves as a foundation 

for its future extension into broader areas such as SLAM in 

computer vision and robotics. 

Table II: Results on the EuRoc MAV Dataset: RMSE of the 
estimated trajectories of VINS-Mono and VINS-Mono-SD.  

Sequence 
VINS-

Mono 

VINS-Mono-

SD  

RMSE 

reduction 

MH_01_easy 0.16 0.14 12.5% 

MH_02_easy 0.18 0.13 27.8% 

MH_03_medium 0.19 0.20 -5.4% 

MH_04_difficult 0.35 0.35 0% 

MH_05_difficult 0.30 0.30 0% 

V1_01_easy 0.09 0.08 11.1% 

V1_02_medium 0.11 0.11 0% 

V1_03_difficult 0.19 0.18 5.26% 

V2_01_easy 0.09 0.08 11.1% 

V2_02_medium 0.16 0.15 6.25% 

V2_03_difficult 0.28 0.26 7.14% 

 

Table III: Results on the TUM VI Dataset: RMSEs of the estimated 

trajectories of VINS-Mono and VINS-Mono-SD.  

Sequence VINS-Mono VINS-Mono-SD  RMSE reduction 

Room 1 0.07 0.07 0.0% 

Room 2 0.07 0.05 28.6% 

Room 3 0.12 0.10 16.7% 

Room 4 0.04 0.04 0.0% 

Room 5 0.21 0.18 14.3% 

Room 6 0.07 0.07 0.0% 

Corridor 1 0.98 0.82 16.3% 

Corridor 2 0.95 0.91 4.2% 

Corridor 3 1.33 1.28 3.8% 

Corridor 4 0.31 0.21 32.3% 

Corridor 5 0.72 0.66 8.3% 

Magistrale 1 2.18 2.14 1.8% 

Magistrale 2 3.14 2.69 14.3% 

Magistrale 3 0.41 0.42 -2.4% 

Magistrale 4 4.29 3.79 11.7% 

Magistrale 5 0.86 0.65 24.4% 

Magistrale 6 2.34 1.60 31.6% 

 

 

 

 
Fig. 2 Comparison between the trajectories estimated by VINS-Mono and 

VINS-Mono-SD for MH_02_easy, Magistrale 4, and Magistrale 6 data 

sequences. VINS-Mono-SD results in a trajectory with the endpoint 
closer to the ground truth for each case, indicating a smaller accumulated 

positioning error. It is noted that each of the last two datasets only 

contains ground truth trajectory data for the very beginning/ending parts. 
         



APPENDIX.  JACOBIAN MATRICES FOR SD COMPUTATION 

For simplicity, we use 𝜉𝑖  and 𝜉𝑗  to represent 𝝃𝑏𝑖

𝑤  and 𝝃𝑏𝑗

𝑤 , 

respectively, in this section. Equation (4) can be re-written by 

𝐫𝑖,𝑘
𝑣 = 𝛅𝑋 = −𝐽𝑇𝛃 , where 𝛃 = 𝐴𝛜 , 𝐴 = (𝐵)−1 , 𝐵 = 𝐽𝐽𝑇 . 

Given 𝐽 = [
𝐽11, 𝐽12, 𝐽13, 0
𝐽21, 𝐽22, 0, 𝐽24

]  computed by equations (7)-(9), 

Jacobian matrices 
𝜕𝐽

𝜕𝜉𝑖
, 

𝜕𝐽

𝜕𝜉𝑗
, 

𝜕𝐽𝑇

𝜕𝜉𝑖
, and 

𝜕𝐽𝑇

𝜕𝜉𝑗
 can be computed by 

using the chain rule as follows:  

[
 
 
 
 
𝜕𝐽11

𝜕𝜉𝑖

𝜕𝐽21

𝜕𝜉𝑖 ]
 
 
 
 

= [𝟎2×3, 𝐶𝐑𝑏𝑖

𝑐𝑗 [−𝐑𝑐
𝑏𝐝1]×],

[
 
 
 
 
𝜕𝐽11

𝜕𝜉𝑗

𝜕𝐽21

𝜕𝜉𝑗 ]
 
 
 
 

= [𝟎2×3, 𝐶𝐑𝑏
𝑐 [𝐑𝑐𝑖

𝑏𝑗
𝐝1]

×
]

[
 
 
 
 
𝜕𝐽12

𝜕𝜉𝑖

𝜕𝐽22

𝜕𝜉𝑖 ]
 
 
 
 

= [𝟎2×3, 𝐶𝐑𝑏𝑖

𝑐𝑗 [−𝐑𝑐
𝑏𝐝2]×],

[
 
 
 
 
𝜕𝐽12

𝜕𝜉𝑗

𝜕𝐽22

𝜕𝜉𝑗 ]
 
 
 
 

= [𝟎2×3, 𝐶𝐑𝑏
𝑐 [𝐑𝑐𝑖

𝑏𝑗
𝐝2]

×
]

 

[
 
 
 
 
𝜕𝐽13

𝜕𝜉𝑖

𝜕𝐽24

𝜕𝜉𝑖 ]
 
 
 
 

= [
−𝐞𝐑𝑤

𝑐𝑗
, 𝐞𝐑𝑏𝑖

𝑐𝑗
[𝐩𝑏𝑖

]
×

𝐞𝐑𝑤

𝑐𝑗 , −𝐞𝐑
𝑏𝑖

𝑐𝑗 [𝐩𝑏𝑖
]
×

] ,

[
 
 
 
 
𝜕𝐽13

𝜕𝜉𝑗

𝜕𝐽24

𝜕𝜉𝑗 ]
 
 
 
 

= [
𝐞𝐑𝑤

𝑐𝑗
, −𝐞𝐑𝑏

𝑐 [𝐩𝑏𝑗
]
×

−𝐞𝐑𝑤

𝑐𝑗 , 𝐞𝐑𝑏
𝑐 [𝐩𝑏𝑗

]
×

] 

where 𝐶 = [
1,0,−𝑥𝑗

0,1,−𝑦𝑗
] , [𝐝1, 𝐝2] =

[
 
 
 
1

𝜆𝑖
, 0

0,
1

𝜆𝑖

0,0 ]
 
 
 

, 𝐞 = [0,0,1],    𝐩𝑏𝑖
= 𝐑𝑐

𝑏 𝐱𝑐𝑖

𝜆𝑖
+

𝐭𝑐
𝑏 ,    𝐩𝑏𝑗

= 𝐑𝑏𝑖

𝑏𝑗𝐩𝑏𝑖
+ 𝐭𝑏𝑖

𝑏𝑗 . Letting 𝐽𝐽𝑇 = 𝐵 , the Jacobian 

matrices 
𝜕𝐵

𝜕𝜉𝑖
, and 

𝜕𝐵

𝜕𝜉𝑗
 are computed by:   

𝜕𝐵(𝑟+1)(𝑐+1)

𝜕𝜉𝑖
= ∑

3

𝑘=0

𝐽𝑇(𝑘, 𝑐)
𝜕𝐽

𝜕𝜉𝑖
(4𝑟 + 𝑘, : ) + 𝐽(𝑟, 𝑘)

𝜕𝐽𝑇

𝜕𝜉𝑖
(𝑐 + 2𝑘, : ), 𝑟, 𝑐 = 0. .1

𝜕𝐵(𝑟+1)(𝑐+1)

𝜕𝜉𝑗
= ∑

3

𝑘=0

𝐽𝑇(𝑘, 𝑐)
𝜕𝐽

𝜕𝜉𝑗
(4𝑟 + 𝑘, : ) + 𝐽(𝑟, 𝑘)

𝜕𝐽𝑇

𝜕𝜉𝑗
(𝑐 + 2𝑘, : ), 𝑟, 𝑐 = 0. .1

 

Letting 𝐴 = (𝐵)−1, the Jacobian matrices, 
𝜕𝐴

𝜕𝜉𝑖
 and 

𝜕𝐴

𝜕𝜉𝑗
, can be 

obtained by: 
𝜕𝐴

𝜕𝜉𝑖
= 𝐹

𝜕𝐵

𝜕𝜉𝑖
,

𝜕𝐴

𝜕𝜉𝑗
= 𝐹

𝜕𝐵

𝜕𝜉𝑗
, where 𝐹 =

−

[
 
 
 
 
𝐴11

2 , 𝐴11𝐴21, 𝐴11𝐴12, 𝐴12𝐴21

𝐴11𝐴12, 𝐴11𝐴22, 𝐴12
2 , 𝐴12𝐴22

𝐴11𝐴21, 𝐴21
2 , 𝐴11𝐴22, 𝐴21𝐴22

𝐴12𝐴21, 𝐴21𝐴22, 𝐴12𝐴22, 𝐴22
2 ]

 
 
 
 

. This is achieved by using the chain 

rule that the partial differential of a matrix’s inverse can be 

computed by 𝜕𝜉(𝑖𝑛𝑣 ∘ 𝐵) = −𝐵−1𝜕𝜉(𝐵)𝐵−1. 

Given 𝛃 = 𝐴𝛜 , the Jacobian matrices, 
𝜕𝛃

𝜕𝜉𝑖
 and 

𝜕𝛃

𝜕𝜉𝑗
, are 

computed by:  

𝜕𝛃

𝜕𝜉𝑖

(𝑟, : ) = ∑

1

𝑐=0

𝛜(𝑐)
𝜕𝐴

𝜕𝜉𝑖

(2𝑟 + 𝑐, : ) + 𝐴(𝑟, 𝑐)
𝜕𝛜

𝜕𝜉𝑖

(𝑐, : ), 𝑟 = 0. .1

𝜕𝛃

𝜕𝜉𝑗

(𝑟, : ) = ∑

1

𝑐=0

𝛜(𝑐)
𝜕𝐴

𝜕𝜉𝑗

(2𝑟 + 𝑐, : ) + 𝐴(𝑟, 𝑐)
𝜕𝛜

𝜕𝜉𝑗

(𝑐, : ), 𝑟 = 0. .1

 

where 𝛜 is defined in (6) and its Jacobian matrices w.r.t. 𝜉𝑖 

and 𝜉𝑗 are given by:  

𝜕𝛜

𝜕𝜉𝑖

= [
1,0,0
0,1,0

] [−𝐱𝑐𝑗]×[𝐑𝑤

𝑐𝑗 ,    − 𝐑
𝑏𝑖

𝑐𝑗
[𝐩𝑏𝑖

]
×
]

𝜕𝛜

𝜕𝜉𝑗

= [
1,0,0
0,1,0

] [−𝐱𝑐𝑗]×[−𝐑𝑤

𝑐𝑗 ,    𝐑𝑏
𝑐 [𝐩𝑏𝑗

]
×
]

 

Finally, given 𝐫𝑖,𝑘
𝑣 = −𝐽𝑇𝛃  and the above formulas, the 

Jacobian matrices, 
𝜕𝐫𝑖,𝑗

𝑣

𝜕𝜉𝑖
 and 

𝜕𝐫𝑖,𝑗
𝑣

𝜕𝜉𝑗
, are computed by:  

𝜕𝐫𝑖,𝑗
𝑣

𝜕𝜉𝑖

(𝑟, : ) = −∑

1

𝑐=0

𝛃(𝑐)
𝜕𝐽𝑇

𝜕𝜉𝑖

(2𝑟 + 𝑐, : ) + 𝐽𝑇(𝑟, 𝑐)
𝜕𝛃

𝜕𝜉𝑖

(𝑐, : ), 𝑟 = 0. .3

𝜕𝐫𝑖,𝑗
𝑣

𝜕𝜉𝑗

(𝑟, : ) = −∑

1

𝑐=0

𝛃(𝑐)
𝜕𝐽𝑇

𝜕𝜉𝑗

(2𝑟 + 𝑐, : ) + 𝐽𝑇(𝑟, 𝑐)
𝜕𝛃

𝜕𝜉𝑗

(𝑐, : ), 𝑟 = 0. .3
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