
  

  

Abstract— This paper presents a hand-worn assistive device 

to assist a visually impaired person with object manipulation. 

The device uses a Google Pixel 3 as the computational platform, 

a Structure Core (SC) sensor for perception, a speech interface, 

and a haptic interface for human-device interaction. W-ROMA 

is intended to assist a visually impaired person to locate a target 

object (nearby or afar) and guide the user to move towards and 

eventually take a hold of the object. To achieve this objective, 

three functions, including object detection, wayfinding, and 

motion guidance, are developed. Object detection locates the 

target object’s position if it falls within the camera’s field of view. 

Wayfinding enables the user to approach the object. The 

haptic/speech interface guides the user to move close to the 

object and then guides the hand to reach the object. A new 

visual-inertial odometery (VIO), called RGBD-VIO, is devised to 

accurately estimate the device’s pose (position and orientation), 

which is then used to generate the motion command to guide the 

user and his/her hand to reach the object. Experimental results 

demonstrate that RGBD-VIO outperforms the state-of-the-art 

VIO methods in 6-DOF device pose estimation and the device is 

effective in assistive object manipulation. 

I. INTRODUCTION 

There are approximately 253 million people with visual 
impairment worldwide [1]. Among them, about 36 million are 
blind. Vision loss limits their ability to live independently and 
deteriorates their quality of life. Since age-related diseases are 
the leading causes of vision loss and the population continues 
to age, more people will go blind. Therefore, there is a dire 
need in developing new assistive technology to help the blind 
live independently and improve their quality of life.  

Object manipulation, such as grabbing a cup of coffee, 
taking a hold of a door handle, etc., is a common task that a 
blind or visually impaired (BVI) person needs to perform in 
day-to-day life. Often, the target object is far. In this case, a 
BVI person must first locate the object, walk towards it, and 
then grasp it. Taking the task of manipulating a kettle on a 
countertop as an example, a VBI person needs to get to the 
kitchen first, locate the kettle, move closer to the countertop 
and the kettle, and then grasp the kettle. Vision loss makes this 
a challenging task for the BVI, particularly in an unfamiliar 
environment. Because it involves independent mobility, object 
recognition, and guiding hand-movement to reach the target 
object. To mitigate the difficulties, researchers have developed 
several robotic navigation aids (RNAs), to assist the BVI in 
wayfinding. Monocular camera [2], [3], stereo cameras [4], 
[5], RGB-D cameras [6], [7], and 3D time-of-flight cameras 
[8], [9] have been used by these RNAs for pose estimation. 
However, these systems were designed only for assistive 
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wayfinding. Some vision-based devices have been introduced 
for object detection [10], [11] or object manipulation [12], 
[13]. These devices are helpful only if the target object is 
inside the camera’s field of view. To address the shortcomings, 
an assistive device for object manipulation must provide three 
functions in a package: object detection, wayfinding, and 
movement guidance (i.e., guide the user to move towards the 
object and then guide the hand to reach it).  

In this paper, we present a wearable robotic object 
manipulation aid (W-ROMA) to assist the BVI to locate a 
target object, move to its vicinity, and take a hold of it. It 
provides both assistive wayfinding and assistive object 
grasping functions to a BVI user. In the paper’s context, we 
assume that the BVI is a white cane user and W-ROMA is to 
enhance the white cane’s function. Also, W-ROMA does not 
deal with the rest of the object manipulation issue after the 
hand reaches the target object. The main contributions of this 
paper include: 1) We developed a hand-worn assistive device 
that provides object detection, wayfinding, and motion 
guidance to assist the BVI with object manipulation tasks in 
their daily lives; 2) We proposed a new VIO method, called 
RGBD-VIO, which tightly couple the data from an RGB-D 
camera and an IMU to estimate device pose for assistive 
wayfinding and motion command generation; 3) We designed 
an effective human-device interface (a haptic interface and a 
speech interface) to guide the user’s hand movement.  

II. RELATED WORK 

A.  Related Wearable Robotic Assistive Device 

In the literature, wearable assistive devices have been 
developed to provide navigational guidance to a blind person 
for wayfinding [2], [4], [6], or object manipulation [12], [13]. 
Treuillet et al. [2] proposed a body-mounted system that uses 
a monocular camera to estimate its location and heading in a 
GPS denied environment and guides the VI to walk along a 
safe route by using audio feedback. Pradeep et al. [4] 
introduced a wearable stereo-vision system for the BVI. It uses 
a stereo camera to estimate the user’s egomotion and generate 
a 3D point cloud map, based on which it guides the BVI to 
steer away from the obstacle and walk in a traversable area 
towards the destination. Later, this system was improved in [6] 
by replacing the stereo camera with an RGB-D camera as the 
RGB-D camera can provide denser depth data of the scene. 
These RNAs, merely based on computer vision, are prone to 
error when the operating environment is not feature-rich. 
Therefore, they cannot provide accurate and reliable 
navigational guidance in a feature-sparse environment. In 
contrast, our W-ROMA employs a new VIO method that can 
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perform well in a feature-sparse area due to the use of inertial 
data for pose estimation. Furthermore, these systems focus on 
assistive wayfinding whereas our W-ROMA can also detect 
the target object and guide the user to take a hold of it. 
Concerning object manipulation, the handheld-camera-based 
system [12] detects the target object by using the SIFT features 
and indicates the object location to the user by sonification so 
that s/he can move the hand up/down and left/right to align 
with the object and while approaching it. The wearable visual 
aid [13] employs a glass-mounted camera to detect a target 
object and provides auditory feedback to help the user track it 
inside the camera’s field of view. These systems, however, 
lack depth information to effectively guide the hand’s 
forward/backward movement to reach the target object. Our 
system uses an RGB-D camera to obtain the depth information 
about the target object, based on which it generates 
navigational commands (forward/backward, left/right 
movement, etc.) and uses an array of vibrating motors to 
convey to the user the desired hand movement to reach the 
target object.  

B.  Related Visual-Inertial Odometry (VIO) 

The proposed W-ROMA employs a visual-inertial 
navigation system (VINS), consisting of an RGB-D camera 
and an inertial measurement unit (IMU), to estimate the 
device’s pose by RGBD-VIO. Our survey on the related work 
is thus focused on RGB-D-camera-based VIO methods. In this 
regard, Laidlow et al. propose a dense RGB-D-inertial SLAM 
method in [14]. The method combines the residuals of the 
photometric per-pixel measurements, geometric point-to-
plane distances, and IMU preintegration to form a cost 
function. The system’s optimal motion state is found, via a 
Gauss-Newton iterative process, to be the one that minimizes 
the cost function. However, this method requires the use of 
GPU for processing the dense camera data in real-time and is 
thus unsuitable for a resource-limited mobile platform [15], 
[16]. Ling et al. propose a sparse-feature-based VIO method 
[17] that does not require GPU speedup. The method extracts 
computationally effective ORB features [18] and uses a 3D-
3D-perspective n-point (PnP) method [19] to compute the 
visual structure (including the camera poses and the features’ 
positions). It then aligns the visual-odometry-estimated 
camera poses with the IMU-estimated poses (IMU 
integrations) to compute the VINS’ initial state, including the 
IMU’s poses, velocities, bias, and gravity direction, and 
estimate the system’s pose afterward by minimizing the cost 
function that takes into account the residuals of the visual and 
inertial measurements. Shan et al. extend this work later by 
[20] that uses corner points [21] as the visual features and 
employs a 3D-2D PnP [22] method to build the visual 
structure. Their method also uses the RGB-D camera’s depth 
data to estimate the VINS’ motion state via a nonlinear 
optimization process after the system’s initialization: A visual 
feature upon its first observation is assigned an inverse depth 
using the depth data from the RGB-D camera. The inverse 
depth value remains constant since then. Differently, our 
RGBD-VIO allows the state estimator to update the inverse 
depth for a distant feature (z>3 m) throughout the optimization 
process to improve the pose estimation accuracy. Our method 
also adds extra edges (i.e., constraints) among the pose 
variables by using the related depth measurements. 
Furthermore, our method uses a hybrid-perspective-n-point 

(HPnP) method to build the visual structure in the state 
initialization process. HPnP requires fewer 3D points than 3D-
2D PnP, resulting in a higher success rate of state initialization. 

III. THE W-ROMA  

As depicted in Fig. 1, the W-ROMA prototype, is 
composed of two main units: a sensing unit and a guiding unit. 
The sensing unit employs an Occipital Structure Core [23] 
(SC) sensor, which is connected to and powered by a Google 
Pixel 3 smartphone via a USB-C cable. The SC has a built-in 
IMU, a color camera, and a stereo IR camera (for depth 
measurement). These sensors form an RGB-D-camera-based 
VINS for device pose estimation, 3D mapping, and target-
object detection. The computational tasks will be performed 
by the smartphone. The guiding unit determines the desired 
hand movement and generates a proper vibration pattern to 
guide the user to move his/her hand to reach the target object. 
Six vibrating motors are installed on the surface of W-ROMA. 
They are controlled by the Bluno Nano board (powered by 
Pixel 3 via a USB-C splitter cable), which communicates with 
Pixel 3 through Bluetooth. A speech interface (using a 
Bluetooth headset) is used as an additional user interface for 
human-device interaction. 

 

Fig 1. W-ROMA hardware system 

Fig. 2 depicts the pipeline of W-ROMA’s software system. 
The software runs entirely on Pixel 3. It processes the imaging 
and inertial data from SC for device pose estimation, 3D 
mapping, and object detection. The TensorFlow Lite Object 
Detection API [24] is used to detect the target object from the 
SC’s color image(s). The API employs the quantized 
MobileNet SSD model [25] that has been trained with the 
COCO dataset [26] for object detection. RGBD-VIO 
processes the IMU and RGB-D data from SC to determine the 
6-DOF device pose, which is then used to generate 
navigational commands to guide the hand movement.  

The Google Pixel 3 smartphone [27] is equipped with a 
Snapdragon 845 processor and 4 GB RAM. It possesses 
adequate computing power for our application. It is noted that 
our system can be migrated onto any ARCore-supported 

 
Fig. 2. Software pipeline of the W-ROMA 



  

devices [28] that are compatible with SC. The smartphone also 
powers the SC sensor and the Bluno Nano board. 

The SC sensor consists of an RGB-D camera and a Bosch 
BMI055 IMU. The camera measures depth by using a pair of 
global shutter IR cameras, which incur less image distortion 
and motion-induced image blur. As a result, SC provides more 
accurate depth measurements than other off-the-shelf RGB-D 

cameras. It has a 59×46×70 field of view and captures color 
images with a 640×480 resolution at 30 Hz. The measurable 
depth range is from 0.3 m to 5 m. The camera’s accurate depth 
measurement ensures accurate pose estimation. The depth 
camera works both indoor (using structured light) and outdoor 
(using stereovision). The IMU provides 6-axis motion 
measurements (3-axis rotational rate and 3-axis acceleration) 
at a rate up to 500 Hz. The IMU and RGB-D data streams are 
synchronized. The whole unit only weighs 52.5 grams. The 
integration of the high-quality structured light camera and low-
noise IMU, as well as the compact size and light weight make 
SC an ideal sensor for W-ROMA. 

Six vibrating motors and a Bluno Nano board [29] forms 
the guiding unit powered by the smartphone. Bluno Nano is 
used to control the vibrating motors due to its low power 
consumption and compact size. The guiding unit 
communicates with the phone via Bluetooth. As shown in Fig. 
1, each of the six vibrating motors indicates one of the six 
directions for the desired hand movement: up, down, left, 
right, backward, and forward. A combination of two of the 
four vibrating motors (up, down, left, right) indicates one of 
the four diagonal directions of movement: up-right, up-left, 
down-right, and down-left. Once Bluno Nano receives a 
command from Pixel 3, it generates the corresponding 
vibrating pattern and retains it for one second. 

IV. MOTION GUIDANCE  

The coordinate systems of W-ROMA are depicted in Fig. 
3. The IMU (body) and camera coordinate systems are denoted 
by {𝐵}/(𝑋𝑏𝑌𝑏𝑍𝑏) and {𝐶}/(𝑋𝑐𝑌𝑐𝑍𝑐), respectively. The initial 
{𝐵} is taken as the world coordinate system {𝑊}. In this paper, 
the superscripts 𝑏  and 𝑐  indicate a variable in {𝐵}  and {𝐶}, 
respectively. The transformation matrix from {𝐵} and {𝐶} is 

precalibrated and denoted 𝑇𝑐
𝑏 = [𝑅𝑐

𝑏;   𝐭𝑐
𝑏] , where 𝑅𝑐

𝑏  stands 

for the rotation and 𝐭𝑐
𝑏 the translation. Using SC’s depth data, 

we can construct the 3D point cloud, which is denoted by 𝑷𝑐𝑘  
for the kth camera frame. It can be transformed and described 
in {𝐶𝑛}  (i.e., the camera’s coordinate system when the nth 

camera frame was captured) by  𝑷𝑐𝑛 = 𝑇𝑐𝑘

𝑐𝑛𝑷𝑐𝑘. 

 
Fig 3. IMU and camera coordinate systems for the W-ROMA 

The hand coordinate system is denoted by {𝐻}/(𝑋ℎ𝑌ℎ𝑍ℎ) 
and its origin 𝑂𝐻  is located at the image center as shown in Fig 
4d. The center point of the target object expressed in {𝐻} is 
denoted by 𝑷 = [𝑋ℎ, 𝑌ℎ , 𝑍ℎ]𝑇 . If  𝑍ℎ ≤ 0 , the “backward” 
command will be generated, indicating that the user should 
move the hand backward. Otherwise, the system reports the 

distance 𝑍ℎ to the user and the projection of 𝑷 on the virtual 
image plane (𝑋ℎ𝑂𝐻𝑌ℎ), denoted 𝒑̃, is used to determine the 
required lateral hand movement for alignment with the target 
object and thus the proper navigational command. For 
example, if 𝒑̃ is in the right green region, the command “right” 
will be generated. If 𝒑̃  is in the down-left blue region ([-
157.5°, -112.5°]), the command will be “down left”.  

In the real world, object manipulation scenarios can be 
classified into three categories: i) case I: the target object is 
close and inside the views of both the color and depth cameras; 
ii) case II: the target object is beyond the SC’s depth range but 
inside the color camera’s view; iii) case III: the target object is 
outside of both color cameras’ views, but it was observed and 
detected earlier. The guidance scheme is designed and 
explained as follows.  

Case I: At the kth camera frame, the object detection 
module [24] detects the target object on the color image and 
determines the center of the object’s bounding box denoted 
𝐏𝐶𝑘 . 𝐏𝐶𝑘  can be transformed into {𝐻}  by 𝐏𝐻𝑘 = 𝑇𝑐

𝐻 𝐏𝐶𝑘  . 
Figure 4a shows an example of this scenario. First, the object 
detection module recognizes the bowl and returns the 
coordinates of a bounding box (Fig. 4a). Then, it is checked on 
the depth image (Fig. 4b), if there is a sufficient number of data 
points around the center of the bounding box (i.e., within the 
square image patch in green as shown in Fig. 4b). If yes, the 
center point of the target object is obtained by using the data 
points within the patch. The center point is then transformed 
into {𝐻} to determine the hand-object misalignment and thus 
the desired hand movement and the navigation command. 

Case II: W-ROMA detects the target object on the kth 
camera image frame. The desired hand movement is computed 
based on the location of the object bounding box’s center 
point. Since the object is beyond the depth camera’s range, the 
device reports to the user that the target object is found but is 
in a distant place. In this case, the device will signal the user 
to walk towards the object. The needed command to retain 
hand-object alignment will be computed and conveyed to the 
user while s/he is walking towards the target object.  

Case III: As the target object was observed and detected 
earlier, its point cloud is transformed into the current hand 
coordinate system to determine the required hand movement. 
For example, the user walks away from the target object 
(bowl) after it was observed and detected (in Fig 4a), making 
it afar and become not visible on the camera’s current image 
as shown in Fig. 4c. The center point (i.e., the center of the 
green square in Fig. 4b) that was computed earlier is 
transformed to the current camera coordinate system (see the 
green dot in Fig. 4d). By reprojecting the transformed center 
point onto the virtual image plane (see Fig. 4e), it can be found 
that the bowl lies in the “right” sector. Therefore, the 
navigation command is “move right” and the right vibrating 
motor will vibrate for one second, signaling the hand to move 
right.  

In summary, as long as the target has been observed and its 
point cloud has been generated, the system can accurately 
estimate the relative 3D distance as well as the misalignment 
between the target and the hand. The information will then be 
used to guide the hand movement to reach the object. To 
achieve this function, W-ROMA’s pose must be accurately 



  

and reliably tracked. This will be achieved by the proposed 
RGB-VIO method.  

 
Fig. 4. (a) Target object (a bowl) detected on an image; (b) Depth image 

(texture-mapped); (c) The bowl is not visible on the image (pixels with depth 

data are shown in red); (d) Top (XZ) view of the point cloud data 
corresponding to Fig. 4c; (e) The target object’s center projected onto the 

virtual image plane of current (the entire point cloud is transformed for 

visualization). 

V. RGBD-VIO 

RGBD-VIO consists of two components, frontend feature 
tracking and backend state estimation. The feature tracking 
component extracts corner features [21] from an image and 
tracks them across images by using KLT [30]. A fundamental-
matrix-based RANSAC process is implemented to remove the 
outliers. keyframes are selected based on the average parallax 
difference and managed by using a sliding window. The 
tracked features in all keyframes within the sliding window are 
passed to the backend process to estimate the VINS’ motion 
state. The backend state estimator starts with a sophisticated 
initialization process and then proceeds with a nonlinear 
optimization process for state estimation. 

A. Initialization 

The initialization procedure first implements a vision-only 
structure from motion to build a visual structure (including the 
camera poses and features’ positions). To keep the 
computational cost low, only keyframes within the sliding 
window are used. Sparse features are extracted and tracked 
over these frames and the feature correspondences are used to 
build the visual structure. Since depth data are available from 
the RGB-D camera, a visual structure with a known scale 
(compared to an arbitrary scale in [33]) can be obtained. First, 
the pose change between two frames with sufficient parallax 
is computed by using a Perspective-n-Point (PnP) method. 
Second, the depths for those visual features (on the two frames) 
that have no depth data from the RGB-D camera are computed 
by triangulation. Third, the device pose is estimated by using 
all visual features from the keyframes within the sliding 
window. Finally, a global Bundle Adjustment is used to 
compute the poses for all keyframes and the features’ positions 
by minimizing the total feature reprojection error. After the 
visual structure is constructed, the initialization process uses a 
visual-initial alignment pipeline [20] to estimate the VINS’s 
initial state, including the IMU’s poses, velocities and biases. 

The accuracy of the pose change estimation (PCE) in the 
first step determines the accuracy of the triangulated feature 
points which further affects the visual structure construction 
and the visual-inertial alignment. Therefore, the reliability of 
the initialization is dependent on the PnP method for 
computing the PCE. VINS-RGBD [20] employs the 3D-2D-

PnP method [22] to compute the PCE since depth data are 
available. However, we find that it often results in an 
inaccurate PCE when the number of visual features with depth 
data is low. To mitigate this issue, we propose a hybrid PnP 
(HPnP) by decoupling the rotation and translation 
computation. The rationale is that visual feature 
correspondences with unknown depth contain the camera’s 
rotation information. Therefore, they can be used to compute 
the rotation. HPnP first employs the 2D-2D PnP method [31] 
to estimate the rotation by using all visual features (w/ and w/o 
depth data). It then determines the inliers and uses the inliers 
with a depth measurement to estimate the camera’s translation 
by minimizing the reprojection error of the de-rotated inliers. 

Specifically, given the rotation 𝑅𝑗𝑖  between the camera 

coordinate system 𝑖 and 𝑗, we can estimate the translation 𝐭𝑗𝑖 

by the following scheme: Assuming 𝑀 pairs of visual features, 

{𝐩𝒌
𝒊 , 𝐩𝒌

𝒋
} for 𝑘 = 1. . . 𝑀 , are observed on frames ℱ𝑖  and ℱ𝑗 , 

where 𝒑𝒌 = [𝑢𝑘 , 𝑣𝑘 , 1]𝑇 represents a visual feature in the 
normalized coordinate system. The corresponding 3D point is 

𝑷𝒌 = [𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘]𝑇. 𝑷𝒌
𝒋
 can be expressed by 

 𝑍𝑘
𝑗
𝒑𝒌

𝒋
= 𝑹𝒋𝒊𝒑𝒌

𝒊 + 𝐭𝑗𝑖 () 

By eliminating 𝑍𝑘
𝑗
 from the equation group in (1), we obtain 

 
(𝑹𝟏 − 𝑢𝑘

𝑗
𝑹𝟑)𝒑𝒌

𝒊 + 𝑡1 − 𝑢𝑘
𝑗
𝑡3 = 0

(𝑹𝟐 − 𝑣𝑘
𝑗
𝑹𝟑)𝒑𝒌

𝒊 + 𝑡2 − 𝑣𝑘
𝑗
𝑡3 = 0

 () 

where 𝑹𝒊  and 𝑡𝑖  (𝑖 = 1, 2, 3) are the 𝑖𝑡ℎ  row of 𝑹𝒋𝒊  and 𝐭𝑗𝑖 , 

respectively. Since each feature can provide a 2-D constraint, 

at least two feature points are needed to estimate 𝐭𝑗𝑖 . For the kth 

feature point, the residual vector of 𝐭𝑗𝑖 is: 

 𝒓𝒌 = (𝑨𝒌𝒕𝒋𝒊 − 𝒃𝒌), () 

where 𝑨𝒌 = [
1 0 − 𝑢𝑘

𝑗

0 1 − 𝑣𝑘
𝑗
] , 𝒃𝒌 = [

(𝑢𝑘
𝑗
𝑅3 − 𝑅1)𝒑𝒌

𝒊

(𝑣𝑘
𝑗
𝑅3 − 𝑅2)𝒑𝒌

𝒊
] . The 

optimal translation 𝐭𝑗𝑖
∗  that minimize ∑𝑀

𝑘=1 ||𝒓𝒌||2   is 

obtained by using the Levenberg-Marquardt algorithm.  

B. State Estimator  

An iterative optimization process is employed to solve the 
nonlinear state estimation problem by using the keyframes and 
the associated IMU data within a sliding window. The state 
vector of W-ROMA is defined as 𝛘 = {𝐱1, 𝐱2, . . . , 𝐱𝑛, 𝜆1,
𝜆2, . . . , 𝜆𝑚}, where 𝐱𝑖 = {𝐭𝑏𝑖

𝑤 , 𝐯𝑏𝑖

𝑤 , 𝐪𝑏𝑖

𝑤 , 𝐛𝑎 , 𝐛𝑔} for 𝑖 = 1, ⋯ , 𝑛 

is the IMU’s motion state, including the translation, velocity, 
rotation, accelerometer bias, and gyroscope bias, at the time 

when the 𝑖𝑡ℎ keyframe is captured. We use 
𝒊

= {𝐭𝑏𝑖

𝑤 , 𝐪𝑏𝑖

𝑤 } to 

denote the device pose and 𝐑𝑏𝑖

𝑤  the rotation matrix 

corresponding to quaternion 𝐪𝑏𝑖

𝑤 . 𝑛 is the size of the sliding 

window (𝑛 = 10 in this work) and 𝑚 is the total number of 
features inside the sliding window. 𝜆𝑘  (𝑘 = 1. . . 𝑚 ) is the 

inverse-depth of the 𝑘𝑡ℎ feature. Differing from the method in 
[20] that initializes the inverse-depth of all visual features by 
using the depth data from the RGB-D camera and keep the 
values constant, RGBD-VIO allows the state estimator to 

update  for a distant feature (z>3 m) throughout the 
optimization process. The optimal state vector 𝛘∗ is the one 
that minimizes the following cost function: 



  

   𝐹(𝛘) = ‖ 𝒓𝒐 ‖2 + ∑𝑗 ‖ 𝒓𝒖
𝒋‖

2
+ ∑𝑘,𝑗 𝜌 (‖ 𝒓

𝒑
𝒌𝒋‖

2
) +

                  ∑𝑘 ‖ 𝒓𝒅
𝒌‖

2
+    ∑𝑘,𝑗 𝜌 (‖ 𝒓𝒅

𝒌𝒋‖
2

)                   (4) 

where 𝜌() is the Cauchy loss function [32].  𝑜𝐫,  𝑢𝐫𝑗, and  𝑝𝐫𝑘𝑗, 

represent the residuals for the prior information from 
marginalization, IMU preintegration (between keyframes 𝑗-1 
and 𝑗), and feature reprojection (for those features without 
depth measurements), respectively. The definitions of  𝑜𝐫,  𝑢𝐫𝑗 

and  𝑝𝐫𝑘𝑗 are referred to [33]. The other terms,  𝑑𝐫𝑘  and 𝑑𝐫𝑘𝑗, 

are defined by using the inverse-depth measurement and they 
are explained as follows. 

 For the kth visual feature on the jth keyframe, the residual 

is given by e𝑘 = 1 𝑍𝑘⁄ − λ̂𝑘, where 𝑍𝑘 is the feature’s actual 

depth measurement provided by the RGB-D camera and λ̂𝑘 is 
the estimate of the inverse-depth. Assuming a Gaussian 
distribution ~𝑁(0, )  for the error of the SC’s image 

disparity, the standard deviation of the inverse-depth error is 
given by λ =  (𝑓 ∗ 𝑙⁄ ), where 𝑓 and 𝑙 are the focal length 

and the baseline of the structured light camera, respectively. 

Then, 𝑑𝐫𝑘 can be computed by  𝑑𝐫𝑘 = e𝑘 λ⁄ . 

For the 𝑘𝑡ℎ  feature that was first observed on the ith 

keyframe as 𝐩𝒌
𝒊 = [𝑢𝑘

𝑖 , 𝑣𝑘
𝑖 , 1]𝑇  and then tracked onto the jth 

keyframe as 𝐩𝒌
𝒋

= [𝑢𝑘
𝑗
, 𝑣𝑘

𝑗
, 1]𝑇  with depth measurement 𝑍𝑘

𝑗
, 

the estimated 3D coordinate can be computed by 𝑷̂𝒌
𝒋

=

[𝑋̂𝑘
𝑗
, 𝑌̂𝑘

𝑗
, 𝑍̂𝑘

𝑗
]𝑇 = 𝐑𝑐𝑖

𝑐𝑗
𝒑𝒌

𝒊 𝜆̂𝑘
𝑖⁄ + 𝐭𝑐𝑖

𝑐𝑗
, where 𝐑𝑐𝑖

𝑐𝑗
 and 𝐭𝑐𝑖

𝑐𝑗
 are the 

rotation matrix and translation from {𝐶𝑗} to {𝐶𝑖}, respectively. 

We define the residual vector  𝑑𝐫𝑘𝑗 = Σ𝑐𝑗

−1/2
[𝑋𝑘

𝑗
− 𝑋̂𝑘

𝑗
, 𝑌𝑘

𝑗
−

𝑌̂𝑘
𝑗
, 1 𝑍𝑘

𝑗⁄ − 𝜆̂𝑘
𝑗

]
𝑇

, where Σ𝑐𝑗
 is the measurement covariance 

and it is given by Σ𝑐𝑗
= 𝑑𝑖𝑎𝑔(𝑥

2 , 𝑦
2 , 

2) with 𝜎𝑥 = 𝜎𝑦 =

Z𝑘
𝑗
𝜎/𝑓, where f is the focal length, 𝜎=1.5 pixels is the image 

noise, and  is the inverse-depth noise. 

It is noted that RGB-VIO automatically degrades itself into 
VIO if depth data is unavailable or an IMU-based pose 
estimation system if both depth and visual data are unavailable.   

VI. EXPERIMENTS 

A. RGBD-VIO Performance Evaluation 

We compare RGBD-VIO with the other two state-of-the-

art RGB-D-camera-based VIO methods, VINS-Fusion (RGB-

D version) [34] and VINS-RGBD [20]. We collected the SC’s 

visual and inertial data by handholding it and walking in our 

laboratory where the ground truth trajectories of the SC were 

obtained by using an OptiTrack motion capture system. We 

acquired five datasets (three short and two long trajectories) 

for comparison. For each dataset, we compared the root mean 

square error (RMSE) of the estimated trajectories by different 

VIO methods. The results are tabulated in Table I. In each 

row, the smallest RMSE is bolded. The results in the table 

show that RGBD-VIO has the smallest RMSE in four of the 

five experiments and its mean RMSE (0.269) is smaller than 

VINS-Fusion (0.359) and VINS-RGBD (0.360). On average, 

RGBD-VIO reduces the RMSE by 25.2% and 25.4% when 

compared to VINS-Fusion and VINS-RGBD, respectively. 

This demonstrates that RGBD-VIO has a more accurate pose 

estimation accuracy than the other methods. In addition, a 

qualitative result is shown in Fig. 5, where the point cloud 

map built for dataset 3 by using the RGBD-VIO-estimated 

poses is rendered and the trajectories estimated by the three 

methods are plotted. The quality of the map reflects the 

RGBD-VIO’s good performance in pose estimation.  

B. Experiment with W-ROMA prototype 

We recruited five sighted volunteers to test the W-ROMA 
prototype for object manipulation. We asked each of them to 
perform an object manipulation task five times w/ and w/o the 
device. The time taken to complete the task was recorded for 
each experiment. If a volunteer could not grasp the target 
object in 2 minutes or s/he picked up a wrong object, the task 
was terminated, and this test was considered as unsuccessful. 
Otherwise, it is a successful one. For each subject, we also 
recorded the number of successful trials (NST).  

The volunteers were blindfolded during the five trials. The 
target object was a wooden bowl (Fig. 4a). At the beginning of 
each trial, the volunteer was standing in front of the bowl, and 
they were asked to move W-ROMA around slowly. This way, 
the system can successfully detect and locate the bowl and 
meanwhile initialize RGBD-VIO for pose tracking. Then the 
volunteer was accompanied by a sighted person and walked to 
another place (labeled as the navigation start point in Fig. 5). 
By making the target object out of the camera’s view, we 
intended to test W-ROMA’s three functions: wayfinding –
guiding the user to walk to the vicinity of the target object; 
object detection – detecting the target object once it appears in 
the camera’s view, and motion guidance – generating effective 
motion commands to guide the user’s hand to grasp the target 
object. If any of these functions fails, the user may fail to grab 
the bowl or needs more time to search for it. When a subject 
started to search the bowl by following the instructions from 
W-ROMA, we started timing. W-ROMA sends the volunteers 

Table I: Comparison of methods: RMSE of the estimated trajectory of each 

method. In each row, the best result is bolded. TL - Trajectory Length.  

 

 
Fig. 5. The point cloud (texture-mapped) and estimated trajectories for 

dataset 3. The place where the system was initialized, the target object, and 
the navigation start point are labeled by the green, red and blue arrows, 
respectively.  



  

a voice command and vibration pattern every two seconds. At 
the beginning of a W-ROMA-aided test, the volunteer was 
guided by a sighted person to touch the bowl and then escorted 
to the navigation starting point. Then, s/he started searching 
for the bowl and we started timing.   

Table II summarizes the experimental results. It can be 
seen that with the assistance of W-ROMA, the total success 
rate of trials was improved three times, from 32% to 96%. 
And the average time for task completion was halved, from 
29.1s to 15.6 s. The results demonstrate that our W-ROMA 
can effectively help the person in wayfinding and object 
manipulation. 

VII. CONCLUSION 

This paper presents a new hand-worn assistive device that 
can assist a visually impaired individual for wayfinding and 
object manipulation. The device uses a Google Pixel 3 as the 
computing platform and a Structure Core sensor as the 
perception sensor. The device can track the user’s position, 
detect the target object in the surroundings, and guide the user 
to grasp the object. Based on the estimated device pose, the 
system computes the location of the target object in the current 
camera coordinate system and uses this information to 
generate the proper navigational command and convey the 
command to the user by using a haptic interface (an array of 
vibrating motors) and a speech interface. The proposed W-
ROMA is demonstrated by experiments to be capable of 
effectively guiding the user to grasp a target object.  

To achieve reliable and accurate pose estimation, a new 
method called RGBD-VIO is proposed. It exploits the 
camera’s depth data in the initialization and the optimization 
processes to improve pose estimation accuracy. In the 
initialization phase, we use a hybrid PnP pipeline to reliably 
initialize the VINS system. Furthermore, we incorporate the 
depth measurements into the nonlinear optimization process to 
improve pose estimation accuracy. Experimental results 
demonstrate that the proposed method outperforms the state-
of-the-art VIO methods in pose estimation accuracy. 
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